

PathoSEEK[®] Total Yeast and Mold Count Assay with SenSATIVAx[®] TLP DNA Purification & Grim Reefer[®] Free DNA Removal

Manufacturer's Validation v2

Table of Contents

Abstract	3
Materials and Methods	4
Test Kit Information	4
Method Developer Validation	5
Table 1: Inclusivity Results, PathoSEEK® Total Yeast and Mold Count Assay	6
Table 2: Exclusivity Results, PathoSEEK® Total Yeast and Mold Count Assay	7
Generation of Cq to CFU Conversion Equation for flower samples	9
Table 3: Cq to CFU Conversion Equations	10
Limit of Detection	10
Action Limit Study	12
Flower Matrix	12
MIP Matrix	13
Proficiency Testing/Certified Reference Material Results	13
Flower Matrix	13
MIP Matrix	14
Conclusions	14

Abstract

Background

Yeasts and molds have been known to cause deterioration and decomposition of cannabis. Certain species of yeast and mold, such as *Aspergillus fumigatus*, can produce toxins and infect immuno-compromised patients with fatal Aspergillosis. The PathoSEEK® Total Yeast and Mold Count (TYM) Detection Assay with SenSATIVAx® Thaumatin Like Protein (TLP) Enzyme Extraction and Grim Reefer® Free DNA Removal Protocol (the MGC TYM Method) is a DNA purification and qPCR assay method for the rapid enumeration of yeasts and molds in cannabis flower. The Thaumatin Like Protein (TLP) is a beta glucanase that digests the glucan cell wall of some yeasts that are difficult to lyse. The Grim Reefer® Free DNA Removal kit eliminates free or extracellular DNA from samples prior to qPCR analysis.

Objective

To evaluate the MGC TYM Method for the enumeration of total yeast and mold in cannabis flower (delta 9-tetrahydrocannabinol >0.3%).

Results

The MGC TYM Method is a rapid, alternative method to traditional plating procedures for the enumeration of yeast and molds in cannabis flower. Inclusivity and exclusivity results show the MGC TYM method is highly specific in discriminating target organisms found in cannabis flowers from non-target organisms. The MGC TYM Method eliminates subjectivity with colony interpretation, offering a rapid alternative to traditional plating procedures.

Conclusions

The MGC TYM Method is a rapid, alternative method to traditional plating procedures for the enumeration of yeast and molds in cannabis flower.

Materials and Methods

Test Kit Information

PathoSEEK® Total Yeast and Mold Detection Assay with SenSATIVAx® TLP Enzyme

Extraction Protocol and Grim Reefer Free DNA Removal

Test Kit Components:

- SenSATIVAx[®] Flower Purification / Leaf DNA Purification Kit MGC P/N 420001 (200 extractions)
 - a. Binding Buffer 1 bottle (store at 2-8°C)
 - b. Elution Buffer 1 bottle (store at 20-28°C)
 - c. Lysis Solution 1 bottle (store at 20-28°C)
- SenSATIVAx[®] TLP Extraction Enzyme MGC P/N 420206 (50 extractions). Store at -15°C to -20°C.
 - a. 2.0mL clear top 1 vial
- 3. PathoSEEK[®] PathoSEEK[®] Total Yeast & Mold Detection Assay
 - -MGC P/N 420103 (200 tests). Store kit at -15 to -20°C.
 - a. 1.5mL clear top -1 vial
- 4. Grim Reefer Free DNA Removal Kit MGC P/N 420145 Store at -15°C to -20°C.
 - a. Grim Reefer Buffer 1 vial (P/N 420142)
 - b. Grim Reefer Enzyme 1 vial (P/N 420141)

- 5. Grim Reefer Assay -MGC P/N 420143 Store at -15°C to -20°C.
- 6. Grim Reefer Control -MGC P/N 420144 Store at -15°C to -20°C.
- 7. qPCR Master Kit v3 MGC P/N 420201 (200 tests). Store kit at -15 to -20°C.
 - a. Reaction Buffer (10x). 1 vial.
 - b. qPCR Master Mix (5x).—1 vial.
 - c. Nuclease Free Water.—2 vials.

Method Developer Validation

For the inclusivity evaluation, Fifty-five (55) strains of yeast and mold, as identified by the AOAC, were evaluated. Target strains were cultured in TSB for 48 hours at room temperature (20-28 °C). After incubation, cultures were diluted in TSB to levels of 100-1,000 CFU/mL. Thirty-one (31) exclusivity organisms were cultured onto non-selective agar under optimal conditions for growth. Exclusivity cultures were analyzed undiluted. Inclusivity and exclusivity cultures were randomized, blind coded, and analyzed by the MGC TYM Method.

Results

Of the 55 inclusivity strains tested, 51 were correctly detected by the PathoSEEK® TYM Method. Two inclusivity isolates, *Arthrinium arundinis* and *Phytophthora infestans* were not detected by the MGC TYM Method or PDA agar. The other two isolates not detected by the MGC TYM Method were *Botrytis cinerea* and *Scopulariopsis acremonium* but were able to be recovered on PDA agar. Of the 31 exclusivity strains tested, all 31 were correctly excluded. Tables 1 and 2 present a summary of the results.

Table 1: Inclusivity Results, PathoSEEK® Total Yeast and Mold Count Assay

#	Species	Strain	Source	PathoSEEK® TYM Result
1	Alternaria alternata	6663	Not Available	Detected
2	Arthrinium arundinis	96021	Bing cherry fruit, Prunus avium cv. Bing, Wenatchee, WA	Not Detected
3	Aspergillus aculeatus	24147	Fragaria sp., Brazil	Detected
4	Aspergillus brasiliensis	9642	Wireless Radio Equipment	Detected
5	Aspergillus brasiliensis	16404	Blueberry	Detected
6	Aspergillus carbonarius	MYA-4 641	Grape berry, Brindis, Apulia, Italy	Detected
7	Aspergillus caesiellus	42693	Dried chillies, New Guinea	Detected
8	Aspergillus carneus	13549	France	Detected
9	Aspergillus clavatus	1007	Not Available	Detected
10	Aspergillus deflectus	62502	Wheat, China	Detected
11	Aspergillus flavus	9643	Shoe Sole, New Guinea	Detected
12	Aspergillus fijiensis Varga et al	20611	Not Available	Detected
13	Aspergillus fumigatus	204305	Human sputum, Virginia	Detected
14	Aspergillus japonicus	16873	Soil, Panama	Detected
15	Aspergillus nidulans	38163	Not Available	Detected
16	Aspergillus niger	16888	Not Available	Detected
17	Aspergillus niveus glaucus	10075	Not Available	Detected
18	Aspergillus ochraceus	18500	Rubber Sheet	Detected
19	Aspergillus oryzae	42149	Cereal	Detected
20	Aspergillus parasiticus	56775	Not Available	Detected
21	Aspergillus tamarii	1005	Tomato	Detected
22	Aspergillus terreus	1012	Soil, Connecticut	Detected
23	Aspergillus tubingensis	1004	Not Available	Detected
24	Aspergillus ustus	1041	Culture Contaminant, USA	Detected
25	Aspergillus versicolor	11730	Cellophane Gas Mask, India	Detected
26	Aureobasidium species	62921	Not Available	Detected
27	Beauveria bassiana	44860	Soil, Georgia	Detected
28	Botrytis cinerea	11542	Azalea Flowers, Washington, DC	Not Detected
29	Candida albicans	10231	Man with bronchomycosis	Detected
30	Candida tropicalis	13803	Not Available	Detected
31	Cladosporium sphaerospermum	11288	Human Nails	Detected
32	Cryptococcus laurentii	18803	Palm Wine, Malaffou, Congo	Detected

33	Cryptococcus neoformans	208821	Patient with Hodgkin's Disease, New York	Detected
34	Fusarium proliferatum	76097	Raw Cotton, North Carolina	Detected
35	Fusarium oxysporum	62506	Celery, Apium graveolens var. dulce, California, USA	Detected
36	Fusarium solani	52628	Cardamom fruit pod, Elettaria cardamomum, Guatemala	Detected
37	Fusarium sporotrichioides	24631	Corn, USA	Detected
38	Fusarium verticillioides	MYA49 22	Maize, Visalia, CA, USA	Detected
39	Mucor circinelloides	38592	Not Available	Detected
40	Mucor hiemalis	28935	Soil in Spruce Forest, Germany	Detected
41	Paecilomyces species	13435	Soil, Japan	Detected
42	Penicillium brevicompactum	9056	Not Available	Detected
43	Penicillium citrinum	10105	Egypt	Detected
44	Penicillium chrysogenum	18476	Cheese, USSR	Detected
45	Penicillium expansum	28885	Grape Berry, California	Detected
46	Penicillium rubens	11709	Selected from Wis. 48-701, ATCC 11707, after N-mustard exposure	Detected
47	Penicillium simplicissimum	48706	Not Available	Detected
48	Penicillium venetum	16025	Acidic Soil, England	Detected
49	Phytophthora infestans	MYA11 13	Hyacinthus sp. bulb, England	Not Detected
50	Purpureocillium lilacinum	10114	Potato tuber, Solanum tuberosum, Glasston, MN	Detected
51	Rhizopus oryzae	52748	Soil, Ithaca, NY	Detected
52	Rhizopus stolonifer	14037	Not Available	Detected
53	Scopulariopsis acremonium	58636	Not Available	Not Detected
54	Yarrowia lipolytica	20390	Chicken House Soil, Alberta, Canada	Detected
55	Talaromyces pinophilus	11797	Non Sporulating Diploid	Detected

Table 2: Exclusivity Results, PathoSEEK® Total Yeast and Mold Count Assay

#	Species	Strain	Source	PathoSEEK® TYM Result
1	Acinetobacter baumannii	19606	Urine	Not Detected
2	Aeromonas hydrophila	7966	From a tin of milk with fishy odor	Not Detected
3	Burkholderia multivorans	17616	Soil enriched with anthranilate at 41C, Berkeley, CA	Not Detected
4	Bacillus subtilis	11774	No Source Listed	Not Detected
5	Citrobacter braakii	3037	No Source Listed	Not Detected
6	Citrobacter koseri	25408	Throat	Not Detected
7	Edwardsiella tarda	23672	No Source Listed	Not Detected

8	Enterobacter aerogenes	13048	Sputum, South Carolina Dept. of Health and Environmental Control	Not Detected
9	Enterobacter cloacae	13047	Spinal Fluid	Not Detected
10	Erwinia rhapontici	29290	English pink wheat grains, England	Not Detected
11	Escherichia coli	25922	Clinical Isolate	Not Detected
12	Escherichia coli O157:H7	35150	Human Feces	Not Detected
13	Escherichia hermannii	700368	No Source Listed	Not Detected
14	Escherichia vulneris	33821	Human wound, Bethesda MD	Not Detected
15	Hafnia alvei	51873	Human feces, The Netherlands	Not Detected
16	Klebsiella oxytoca	51983	Human blood, Albany NY, USA	Not Detected
17	Klebsiella pneumonia	BAA-21 46	Human urine	Not Detected
18	Listeria monocytogenes	7647	Bovine	Not Detected
19	Morganella morganii	25829	Stool of infant (Providence City Hospital)	Not Detected
20	Pantoea agglomerans	43348	Gypsophila paniculata galls, California	Not Detected
21	Proteus mirabilis	43071	Rectum, Georgia	Not Detected
22	Pseudomonas aeruginosa	15442	Animal room water bottle	Not Detected
23	Pseudomonas aeruginosa	35554	No Source Listed	Not Detected
24	Pseudomonas fluorescens	13525	Pre-filter tanks, England	Not Detected
25	Pseudomonas putida	47054	No source listed	Not Detected
26	Ralstonia insidiosa	49129	Clinical isolate	Not Detected
27	Rahnella species	33991	Soil	Not Detected
28	Salmonella enterica	13311	Feces, Human, 1911	Not Detected
29	Stenotrophomonas maltophilia	13637	Oropharyngeal region of patient with mouth cancer	Not Detected
30	Staphylococcus aureus	12600	Pleural Fluid	Not Detected
31	Serratia marcescens	27137	Human isolate	Not Detected

Generation of Cq to CFU Conversion Equation for flower samples

The Cq to CFU/g equation was generated by running ten known Yeast and Mold cultures on MGC TYM Method compared against plating on DRBC plates. The MGC TYM Method was done in replicates of five and plating was done in triplicate. We averaged all results before creating a scatter point graph, using the qPCR data on the x-axis, and the log10 of the plating data on the y-axis. We created the equation by using the best-fit line to these points. The resulting equation is y = -0.1267x + 6.6781 where y = the log10 of the plating data on DRBC and x = the Cq on qPCR. (Figure 1)

Figure 1 - Cq to CFU/g Equation

Use the following equation to convert Cq (X) to Log CFU (Y)

$$Y = -0.1267X + 6.6781$$

^{866.574.3582 • &}lt;u>www.medicinalgenomics.com</u> • PathoSEEK® Total Yeast and Mold Count Assay with SenSATIVAx® TLP DNA Purification & Grim Reefer® Free DNA Removal Manufacturer's Validation Document v2 • Page 9

Perform an inverse logarithmic transformation of Y to and multiply the result by 20 to obtain

CFU/g.

Table 3:	Cq to	CFU	Conversion	Equations
----------	-------	-----	------------	-----------

Matrix	Microbial Test	Cq to CFU Conversion Equation
Flower	Total Yeast and Mold Count	CFU/g = 10^((-0.1267*Cq)+6.6781) Multiply resulting CFU x 20 to account for upfront dilution factor
MIP	Total Yeast and Mold Count	IF Cq<40, Plate confirm for enumeration

Limit of Detection

The limit of detection (LOD) is used to describe the smallest concentration of a species that can be reliably measured by the Medicinal Genomics (MGC) PathoSEEK® qPCR Detection Assay. This is the point where the qPCR signal crosses the set threshold before a Cq of 40. The genomic copy number was calculated using the sample DNA concentration and the size of the genome for the species in question using the equation:

number of copies = X ng*6.0221 x 10^{23} molecules/mole / (N x 650 g/mole) * 1x 10^{9} ng/g.

The following data demonstrates the experiments used to calculate the limit of detection when using the MGC TYM Method.

Assay	DNA Copies (A. niger)	Cq Value	%RSD
TYM	5000	19.06	
TYM	5000	19.01	0.09
TYM	5000	19.19	
TYM	2500	20.14	
TYM	2500	20.18	0.03
TYM	2500	20.12	
TYM	1250	21.17	
TYM	1250	21.25	0.04
TYM	1250	21.24	
TYM	625	22.29	
TYM	625	22.23	0.03
TYM	625	22.26	
TYM	313	23.49	
TYM	313	23.47	0.03
TYM	313	23.43	
TYM	156	24.47	
TYM	156	24.46	0.06
TYM	156	24.36	
TYM	78	25.81	
TYM	78	25.69	0.06
TYM	78	25.76	
TYM	39	26.73	
TYM	39	26.74	0.01
TYM	39	26.75	
TYM	20	28.17	
TYM	20	27.99	0.12
TYM	20	28.22	
TYM	10	29.38	
TYM	10	29.36	0.04
TYM	10	29.31	
TYM	5	30.23	
TYM	5	30.59	0.18
TYM	5	30.33	
TYM	2	31.46	
TYM	2	31.73	0.16
TYM	2	31.74	

Table 4: LOD, Total Yeast and Mold Assay

TYM	No Spike	ND	
TYM	No Spike	ND	Not Detected
TYM	No Spike	ND	

Figure 2: Total Yeast and Mold qPCR Dilution Curves and qPCR Efficiency (E)

Action Limit Study

Flower Matrix

Fifty Naturally contaminated Cannabis flower samples with varying levels of yeast and mold contamination were tested via Potato Dextrose Agar (PDA) with TA and Dichloran Rose Bengal Chloramphenicol (DRBC) vs qPCR. The DNA purifications and qPCR analysis were performed according to the PathoSEEK® Total Yeast and Mold Count Assay with SenSATIVAx® TLP DNA Purification & Grim Reefer® Free DNA Removal User Guide v2. See Table 5 below for resulting data.

Contamination Level	qPCR Cq Value	qPCR cq to cfu/g result	Average cfu Result PDA w/ TA (cfu/g)	Average cfu results DRBC (cfu/g)
Low	ND	ND	140	490
Low	ND	ND	120	290
Low	ND	ND	130	500
Low	ND	ND	130	450
Low	ND	ND	150	590
Low/Medium	ND	ND	430	870
Low/Medium	36.64	2,171	1,510	1,810
Low/Medium	37.13	1,881	1,750	2,090
Low/Medium	35.61	2,932	1,680	1,900
Low/Medium	ND	ND	250	710
Low/Medium	38.20	1,377	2,630	2,150
Low/Medium	36.53	2,244	2,290	2,300
Low/Medium	38.41	1,295	1,820	1,890
Low/Medium	38.17	1,390	1,760	1,570
Low/Medium	38.68	1,198	1,840	1,350
Low/Medium	38.83	1,145	1,360	1,570
Low/Medium	ND	ND	270	520
Low/Medium	38.14	1,403	1,640	2,840
Low/Medium	ND	ND	440	850
Low/Medium	ND	ND	820	930
Low/Medium	39.00	1,090	1,940	2,140
Low/Medium	38.30	1,340	1,770	1,880
Low/Medium	36.83	2,058	2,180	2,200
Low/Medium	37.52	1,682	1,840	2,290
Low/Medium	38.15	1,400	1,220	1,720
Medium/High	36.50	2,265	3,130	8,100
Medium/High	30.51	12,994	17,540	17,760
Medium/High	30.31	13,788	17,360	17,980
Medium/High	32.35	7,599	5,510	6,060
Medium/High	32.00	8,404	7,740	7,580
Medium/High	31.70	9,173	6,670	6,410
Medium/High	30.01	15,010	17,160	17,320
Medium/High	34.04	4,638	6,070	7,630
Medium/High	33.53	5,383	6,580	7,540
Medium/High	30.79	11,963	18,240	17,550
Medium/High	30.01	15,038	17,560	17,540
Medium/High	29.61	16,891	17,700	17,840
Medium/High	31.83	8,831	9,850	9,820
Medium/High	30.54	12,876	10,370	10,170
Medium/High	29.45	17,718	19,450	19,200
Medium/High	29.10	19,587	20,470	18,990
Medium/High	28.02	26,877	19,280	18,820
Medium/High	30.65	12,473	11,340	11,060
Medium/High	29.10	19,581	19,140	19,320
Medium/High	30.20	14,233	18,370	14,720
High	26.49	41,926	39,000	38,500
Hlgh	26.32	44,155	67,500	39,000
High	26.32	44,109	47,500	42,500
High	27.00	36,122	61,500	46,000
Hlgh	27.30	33,139	50,000	41,500

Table 5: Flower Matrix qPCR Results compared to PDA and DRBC Agar Plates

MIP Matrix

We recommend enriching non-flower (MIP) samples in TSB and processing as pass/fail as described in the PathoSEEK® Total Yeast and Mold Count Assay with SenSATIVAx® TLP DNA Purification & Grim Reefer® Free DNA Removal User Guide v2. Refer to data in Table 7 below.

Proficiency Testing/Certified Reference Material Results

Flower Matrix

Material Used - NSI Part Number CMCQ-085, Quantitative Yeast and Mold in HEMP

Testing was performed using MGC's Total Yeast and Mold Assay with TLP in addition to plating

on DRBC agar plates. A 1:20 upfront dilution in nuclease free water was used.

Note: For more information on using NSI CRMs or PTs with PathoSEEK please

contact support@medicinalgenomics.com

Table 6: NSI Hemp CRM Results

NSI Acceptance Limits = 3.88E+04 - 1.55E+05 (38,800 - 155,000 cfu/g)

Sample	Extraction	Dilution	Target	Ct (FAM)	Average	Ct(HEX)	Avg CFU/g qPCR	Avg CFU/g DRBC
TYM in Hemp	1	1:20	ТҮМ	26.32	26.21	26.65	45,566	90,000
TYM in Hemp	1	1:20	TYM	26.61		26.65		
TYM in Hemp	2	1:20	TYM	25.60		26.01		
TYM in Hemp	2	1:20	ТҮМ	26.30		26.55		
Positive Control				11.91				
NTC				No Cq				

MIP Matrix

Material Used - NSI 51-00054, C. albicans CRM for USP 51

CRM is provided as a lyophilized pellet. The pellet was serially diluted in nuclease free water and spiked into the presence of a 2.4 mL TSB and 1g hemp oil matrix. The samples were then enriched overnight at 37° C for 18 hours. After enrichment, the samples were processed with the MGC TYM Method. Results are below in Table 7.

	Table 7:	Results	of Hemp	Oil sam	ples spil	ked with	NSI C.	albicans	CRM
--	----------	---------	---------	---------	-----------	----------	--------	----------	-----

Sample	Spike Level (CFU)	Fam (TYM) Cq	HEX (IC) Cq
Hemp Oil	243	No Cq	25.87
Hemp Oil	243	No Cq	26.17
Hemp Oil	696	37.09	26.26
Hemp Oil	696	35.21	25.81
Positive Control	N/A	12.61	No Cq
NTC	N/A	No Cq	No Cq

Conclusions

The data derived from the use of commercially available Proficiency Tests/CRMs for total yeast and mold indicate that the MGC TYM Method falls within range compared to enumeration data provided by the NSI CoA for yeasts and molds in cannabis flower. For MIPs, detection of \leq 1000 CFU/g C. albicans is achieved with enrichment. For MIP samples, if detection is observed via qPCR on a sample post enrichment, enumeration and viability should be determined with the use of the culture plate method of choice. We recommend DRBC as that is the AOAC preferred plating method.